2 research outputs found

    Public Transit Arrival Prediction: a Seq2Seq RNN Approach

    Full text link
    Arrival/Travel times for public transit exhibit variability on account of factors like seasonality, dwell times at bus stops, traffic signals, travel demand fluctuation etc. The developing world in particular is plagued by additional factors like lack of lane discipline, excess vehicles, diverse modes of transport and so on. This renders the bus arrival time prediction (BATP) to be a challenging problem especially in the developing world. A novel data-driven model based on recurrent neural networks (RNNs) is proposed for BATP (in real-time) in the current work. The model intelligently incorporates both spatial and temporal correlations in a unique (non-linear) fashion distinct from existing approaches. In particular, we propose a Gated Recurrent Unit (GRU) based Encoder-Decoder(ED) OR Seq2Seq RNN model (originally introduced for language translation) for BATP. The geometry of the dynamic real time BATP problem enables a nice fit with the Encoder-Decoder based RNN structure. We feed relevant additional synchronized inputs (from previous trips) at each step of the decoder (a feature classically unexplored in machine translation applications). Further motivated from accurately modelling congestion influences on travel time prediction, we additionally propose to use a bidirectional layer at the decoder (something unexplored in other time-series based ED application contexts). The effectiveness of the proposed algorithms is demonstrated on real field data collected from challenging traffic conditions. Our experiments indicate that the proposed method outperforms diverse existing state-of-art data-driven approaches proposed for the same problem

    Generalized Simultaneous Perturbation-based Gradient Search with Reduced Estimator Bias

    Full text link
    We present in this paper a family of generalized simultaneous perturbation-based gradient search (GSPGS) estimators that use noisy function measurements. The number of function measurements required by each estimator is guided by the desired level of accuracy. We first present in detail unbalanced generalized simultaneous perturbation stochastic approximation (GSPSA) estimators and later present the balanced versions (B-GSPSA) of these. We extend this idea further and present the generalized smoothed functional (GSF) and generalized random directions stochastic approximation (GRDSA) estimators, respectively, as well as their balanced variants. We show that estimators within any specified class requiring more number of function measurements result in lower estimator bias. We present a detailed analysis of both the asymptotic and non-asymptotic convergence of the resulting stochastic approximation schemes. We further present a series of experimental results with the various GSPGS estimators on the Rastrigin and quadratic function objectives. Our experiments are seen to validate our theoretical findings.Comment: The material in this paper was presented in part at the Conference on Information Sciences and Systems (CISS) in March 202
    corecore